crimea-fun.ru

Критической температурой называется. Критическое состояние вещества

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ


ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ТЕМПЕРАТУРЫ

I.Краткая теория

§ 1.Реальные газы.

Уравнение состояния Клапейрона - Менделеева достаточно хорошо описывает известные из опытов свойства газов. Однако, оно является приближённым и оказывается справедливым только при достаточно малых давлениях. Кроме того опыт показывает, что при определенных значениях давления и температуры газы конденсируется, т.е. приходят в жидкое состояние. Уравнение Клапейрона - Менделеева это явление не описывает. Изотерма для реального газа при этом имеет характерный вид (рис. 1).

Рассмотрим процесс, соответствующий этому графику, проведённый в направлении ABCD. Часть изотермы AB описывает процесс сжатия газа до начала конденсации. Она достаточно хорошо может совпадать с изотермой, рассчитанной по уравнению Клапейрона-Менделеева (изображена пунктиром). Однако в процессе, проведённом с реальным веществом при определенном давлении начнётся конденсация (точка B на графике). Это давление называют давлением насыщенных паров или просто давлением насыщения .

Часть графика BC описывает двухфазное состояние вещества. При уменьшении объема от до все большая доля вещества переходит из парообразного состояния в жидкое. Точка C изображает состояние, когда всё вещество превратилось в жидкость. Наконец, CD описывает процесс сжатия жидкости, график идет почти параллельно вертикальной оси, отражая известный факт: жидкости имеют гораздо меньшую сжимаемость, чем газы.

Если проводить подобные изотермические процессы с одним и тем же количеством вещества при различных температурах, мы получим систему изотерм, изображенную на рис.2.

Кривые, соответствующие более высоким температурам, располагаются дальше от начала координат. С повышением температуры горизонтальные части изотерм, описывающие двухфазное состояние, уменьшаются и при некоторой температуре вырождаются в одну единственную точку. Эта температура называется критической.

При температуре выше критической нельзя получить вещество в двухфазном состоянии.


§ 2. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса.

Уравнение состояния идеального газа при больших плотностях не может дать хорошего совпадения с экспериментом, поскольку при eгo написании предполагалось, что молекулы не имеют размеров и не взаимодействуют между собой. Чтобы получить уравнение состояния, удовлетворительно описывающее свойства реальных газов, надо учесть размеры молекул или силы отталкивания, возникающие между молекулами, находящимися на малых расстояниях друг отдруга. Кроме того, надо учестьтакже и силы притяжения между молекулами.


Можно взять за основу уравнение состояния Клапейрона - Менделеева и внести в него соответствующие поправки. Учёт сил отталкивания или размеров молекул произведем, введя поправку к объёму в уравнении Клапейрона - Менделеева для одного киломоля газа

(1)

(2)

Из второго выражения видно, что при давление стремится к бесконечности, т.е. нельзя сжать вещество до объёма, равного нулю.

При сравнительно больших расстояниях междумолекулами существенную роль играют силы притяжения. Их можно учесть, введя соответствующую поправку к давлению в уравнении (2):

(3)

Эту поправку необходимо взять с отрицательным знаком, полагая, что притяжение молекул приводит к уменьшению давления на стенки содержащего данный газ сосуда. Уравнение (3) можно преобразовать так:

(4)

Это и есть уравнение состояния реальных газов, впервые полученное Ван-дер-Ваальсом. Можно записать его для произвольного количества вещества:

(5)

где относительная молекулярная масса.


Уравнение (4) можно представить в виде степенного ряда по объему:

(6)

При фиксированных давлении и температуре оно будет являться уравнении третьей степени относительно объема и должно иметь три корня. Наиболее интересные результаты получаются при анализе изотерм Ван-дер-Ваальса, одна на которых изображена, на рис.3.

При фиксированной температуре каждому значению давление будут соответствовать три корня уравнении (6). Давлению соответствуют три вещественных корня , , . Давлениям и соответствуют один вещественный корень и два комплексно сопряжённых корня, которые физического смысла не имеют и в дальнейшем рассматриваться не будут.

Интересно сопоставить изотерму Ван-дер-Ваальса и опытную изотерму. На рис.3 горизонтальный участок опытной изотермы изображен прямой BF. Часть AB описывает газообразное состояние вещества и удовлетворительно совпадает с опытной изотермой. Часть FG описывает изотермическое сжатие жидкости. Таким образом, уравнение Ван-дер-Ваальса сравнительно неплохо описывает поведение вещества в газообразном и жидком состояниях при изотермическом процессе.

Существенно изотермы отличаются на участке BF . Однако ветви BC и EFимеют определённый физический смысл. Состояния вещества, изображаемые участком BC, могут быть экспериментально получены. Это - пересыщенный или переохлаждённый пар. Состояния вещества, соответствующие участку EFтакже наблюдаются на опыте. Жидкость в таких состояниях называется перегретой. Эти состояния называют метастабильными. Часть изотермы Ван-дер-Ваальса CDE в опытах никогда не наблюдается. Она описывает нестабильное состояние вещества.


§ 3. Критическая температура. Критическое состояние.

Построим семейство изотерм Ван-дер-Ваальса (рис.4). С увеличением температуры кривые будут располагаться далее от начала координаты и характер их будет меняться. Максимумы и минимумы будут сближаться как по оси абсцисс, так и по оси ординат, и при некоторой температуре сольются в одну точку, точку перегиба. При этой температуре и соответствующем данной точке давлении три вещественных корня становятся кратными. Различие между жидкостью и паром и граница раздела между ними исчезают. Такое состояние называют критическим, а температуру - критической температурой. Эта температура является характерным свойством каждого вещества.

Используя уравнение Ван-дер-Ваальса, можно выразить критические параметры , , через индивидуальные константы вещества и , а также через универсальную газовую постоянную .


Один способ нахождения критических параметров основывается на том, что корни уравнения Ван-дер-Ваальса, написанного для критического состояния, являются кратными, т.е, уравнение можно представить так:

Сопоставим с уравнением (6)

Это равенство будет тождественно выполняться, если коэффициенты, при одинаковых степенях будут равны между собой:

,

, (8)

.

Решая систему уравнений (8), получим выражения для критических параметров:

, , . (9)


Эти же результаты можно получить другим путем. Как уже отмечалось, точка, изображающая критическое состояние, является точкой перегиба на графике изотермического процесса в координатах , . Используем уравнение (3), определяющее давление как функции объёма при фиксированной температуре. Из курса математического анализа известно, что в точке перегиба первая и вторая производные равны нулю:

(10)

(11)

Решая систему уравнений (3), (10), (11) относительно , , получим для них те же соотношения (9).

Определив экспериментально критические параметры, можно найти индивидуальные константы вещества и .

, . (12)

Таким образом, уравнение Ван-дер-Ваальса описывает свойства жидкостей и газов, предсказывает существование критического состояния. Однако, оно является менее универсальным, чем уравнение Клапейрона-Менделееве, так как в него входят две индивидуальные константы вещества и .


II. Описание УСТАНОВКИ.

Знание критических параметров , , представляет значительный научный и практический интерес. При температуре выше критической вещество может существовать только в газообразном состоянии. Скрытая теплота парообразования и коэффициент поверхностного натяжения при критической температуре обращаются в нуль.

Построив на основе экспериментальных данных систему изотерм (как показано не Рис2), можно определить критическую температуру и два других параметра. Этот метод был впервые применен Эндрюсом при определении критических параметров углекислого газ. При определении только критической температуры можно воспользоваться менее громоздким методом исчезновения мениска. Исследуемое вещество помещается в запаянную стеклянную ампулу и нагревается. Если количество жидкости в ампуле подобрано таким образом, что в процессе нагревания мениск практически остается на месте, то в определённый момент вещество достигнет критического состояния (мениск при этом исчезнет). При охлаждении он снова появится и вещество разделится на две фазы. Температура, при которой появляется и исчезает мениск и будет являться критической температурой.

Определение критической температуры производится на установке, схема которой изображена не рис.5.

На общей подставке смонтированы осветитель 1 и термостат 2, в который помещается специальный микропресс 3 с исследуемы веществом. В нижней части корпуса осветителя имеется два тумблера: одним включается осветитель, другим нагреватели 4 термостате. Температура термостата контролируется с помощью двух хромель-копелевых термопар, включенных последовательно. Рабочие спаи термопар 5 помещаются в непосредственной близости к микропрессу. Термо-э.д.с. измеряется с помощью цифрового вольтметра 6.

Устройство микропресса, совмещающего в себе конструктивно рабочую камеру и миниатюрный пресс, показано на рис.6. Рабочим объемом иикропресса является объём тонкой стеклянной трубки 1, которая помещается в корпус пресса 2. С обоих торцов стеклянная трубка герметически закрывается винтами 3 и 4 с фторопластовыми уплотнениями 5. Внутри винта 4 по резьбе может перемещаться поршень 6 и таким образом менять рабочий объём. Визуальное наблюдение за изменением состояния вещества производится через смотровые щели в корпусе пресса и в корпусе термостате.


III. ИЗМЕРЕНИИ. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ.

В процессе выполнения лабораторной работы необходимо провести градуировку термопар и построение градировочной кривой. Для этого предварительно включить вольтметр, а затем, через 20-30 минут, включить нагреватели термостата. Вместо микропрес-са в термостат помещается ртутный термометр с пределами измерения от 0°С до 350°С. В процессе повышения температуры необходимо записывать показания вольтметра и термометра через Dt=20°С . Затем надо включить нагрев термостата и записать соответствующие показания при остывании. Окончательные результаты градуировки представить в виде графика: по вертикали откладываются показания вольтметра в милливольтах U , по горизонтали разность между температурой термостата и комнатной температурой. Необходимо брать именно разность температур, поскольку "холодные" спаи термопар находятся при комнатной температуре.

После проведения градуировки заполнить микропресс исследуемым веществом со стороны винта 3 с помощью шприца. Поршень при этом должен быть введён в стеклянную, трубку до соответствующей отметки, примерно на 3/4 длины. Далее необходимо винтом 3 с уплотнением закрыть пресс так, чтобы в стеклянную трубку не попал пузырёк воздуха. Винты 3 и 4 надо крепко закрутить. После этого поршень можно вывести из стеклянной трубки таким образом, чтобы образовавшаяся при этом газообразная фаза занимала примерно такой же объём, как и жидкая. Затем пресс помещают в термостат так, чтобы рукоятка поршня находилась сверху за пределами термостата и включают нагрев.

В процессе нагревания необходимо следить за положением менискаи, перемещая поршень, в ту или другую сторону, не давать ему уйти из поля зрения. При определенной температуре мениск должен исчезнуть. Это критическая температура. Вещество в критическим состоянии интенсивно рассеивает свет и становится мутно-белым, непрозрачным. В данной установке детали микропресса выходят за пределы термостата, через них происходит интенсивный теплоотвод, Поэтому температура в стеклянной трубке неоднородна, и критическое состояние может быть получено только в нижней части трубки. Это и наблюдается в эксперименте. В верхней части трубки при этом может наблюдаться граница раздела двух фаз.

В процессе работы необходимо измерить температуру, при которой в нижней части стеклянной трубку начнется интенсивное рассеяние света веществом. Затем нагреватели необходимо выключить и измерить температуру, при которой это рассеяние исчезнет. Подобные измерения провести несколько рез и в качестве критической температуры взять среднее значение.


Таблица 1.

По результатам измерения критической температуры. и используя данные таблицы 1 для критического давления, рассчитать константы Ван-дер-Ваальса и для исследуемого вещества.


КОНТРОЛЬНЫЕ ВОПРОСЫ

1) Для чего введены константы и в уравнение Ван-дер-Ваальса?

2) Сравнить систему реальных изотерм и систему изотерм Ван-дер-Ваальса.

3) Как меняется давление насыщения при изменении температуры?

4) Рассказать о двух методах вывода формул для критических параметров.

5) Написать приведенное уравнение Ван-дер-Ваальса.

6)
Сформулировать закон соответственных состояний.

ЛИТЕРАТУРА.

1) А.К.Кикоин, И.К.Кикоин. Молекулярная физика. Изд."Наука",1976, с.208-237.

2) Д.В.Сивухин. Общий курс физики. Т.П, изд."Наука", 1976,с.371-399.

Критическое состояние

1) предельное состояние равновесия двухфазных систем, в котором обе сосуществующие фазы (См. Фаза) становятся тождественными по своим свойствам;

2) состояние вещества в точках фазовых переходов (См. Фазовый переход) II рода. К. с., являющееся предельным случаем равновесия двухфазных систем, наблюдается в чистых веществах при равновесии жидкость - газ, а в растворах - при фазовых равновесиях (См. Фазовое равновесие) газ - газ, жидкость - жидкость, жидкость - газ, твёрдое тело - твёрдое тело. На диаграммах состояния (См. Диаграмма состояния) К. с. соответствуют предельные точки на кривых равновесия фаз (рис. 1 , а и б) - т. н. критические точки (См. Критическая точка). Согласно фаз правилу (См. Фаз правило) критическая точка изолирована в случае двухфазного равновесия чистого вещества, а, например, в случае бинарных (двойных) растворов (См. Растворы) критические точки образуют критическую кривую в пространстве термодинамических переменных (параметров состояния). Значения параметров состояния, соответствующие К. с., называются критическими - критическое давление рк , критическая температура Тк , критический объём V к , критический состав хк и т. д.

С приближением к К. с. различия в плотности, составе и др. свойствах сосуществующих фаз, а также теплота фазового перехода и межфазное поверхностное натяжение уменьшаются и в критической точке равны нулю.

В том случае, когда кривая сосуществования фаз заканчивается критической точкой, оказывается принципиально возможным перевести вещество из одной фазы в другую, минуя область расслоения на две фазы (например, газ превратить в жидкость, изменяя его состояние по линии AB на рис. 1 , а, т. е. минуя область, где одновременно существуют газ и жидкость). Сжижение (конденсацию) газов возможно осуществить лишь после их охлаждения до температур, меньших Тк.

В двухкомпонентных системах характерные для К. с. явления наблюдаются не только в критической точке равновесия жидкость - газ, но и в так называемых критических точках растворимости, где взаимная растворимость компонентов становится неограниченной. Существуют двойные жидкие системы как с одной, так и с двумя критическими точками растворимости - верхней и нижней (рис. 2 , а и б). Эти точки являются температурными границами области расслаивания жидких смесей на фазы различного состава. Аналогичной способностью к расслаиванию при определённой критической температуре обладают некоторые растворы газов и Твёрдые растворы .

Переход системы из однофазного состояния в двухфазное вне критической точки и изменение состояния в самой критической точке происходят существенно различным образом. В первом случае при расслоении на две фазы переход начинается с появления (или исчезновения) бесконечно малого количества второй фазы с конечным отличием её свойств от свойств первой фазы, что сопровождается выделением или поглощением теплоты фазового перехода. Поскольку возникновение такой новой фазы приводит к появлению поверхности раздела и поверхностной энергии, для её рождения требуются достаточно большие зародыши. Это означает, что при таком фазовом переходе (фазовом переходе 1 рода) возможны переохлаждение или перегрев первой фазы, обусловленные отсутствием жизнеспособных зародышей новой фазы.

Фазовые переходы в критических точках, являющихся предельными на кривых равновесия фаз, представляют собой частные случаи фазовых переходов II рода. В критической точке фазовый переход происходит в масштабах всей системы. Флуктуационно возникающая новая фаза по своим свойствам бесконечно мало отличается от свойств исходной фазы. Поэтому возникновение новой фазы не связано с поверхностной энергией, т. е. исключается перегрев или переохлаждение, и фазовый переход не сопровождается выделением или поглощением теплоты и скачком удельного объёма (фазовый переход II рода).

При приближении к К. с. физические свойства вещества резко изменяются: теоретически неограниченно возрастает теплоёмкость и восприимчивость системы к внешним воздействиям (например, изотермическая сжимаемость в случае чистых жидкостей, магнитная восприимчивость у ферромагнетиков и т. д.); наблюдается целый ряд др. особенностей в поведении вещества (см. Критические явления). Эти особенности, характерные для К. с. объектов самой различной природы, объясняются тем, что свойства вещества в К. с. определяются не столько конкретными законами взаимодействия его частиц, сколько резким возрастанием в веществе флуктуаций и радиуса их корреляции. Знание особых свойств веществ в К. с. необходимо во многих областях науки и техники: при создании энергетических установок на сверхкритических параметрах, сверхпроводящих систем, установок для сжижения газов, разделения смесей и т. д.

Лит.: Фишер М., Природа критического состояния, пер. с англ., М., 1968; Браут Р., фазовые переходы, пер. с англ., М., 1967; Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Кричевский И. Р., Фазовые равновесия в растворах при высоких давлениях, 2 изд., М.- Л., 1952.

С. П. Малышенко.

Рис. 1. а - диаграмма состояния чистого вещества в координатах р, Т. Кривые сосуществования обозначены цифрами: 1 - равновесие жидкость - газ, 2 - твёрдое тело; 3 - твёрдое тело - жидкость; К - критическая точка, Т = Т к - критическая изотерма; б - диаграмма в координатах р, V. Цифрами обозначены области сосуществования двух фаз: 1 - жидкость - газ; 2 - твёрдое тело - газ; 3 - твёрдое тело - жидкость.

Рис. 2. а - верхняя критическая точка (Кв) жидкой смеси фенол - вода (Tк ≈ 66°С). Заштрихована область, где смесь состоит из двух фаз, имеющих различную концентрацию компонентов; б - двухкомпонентная жидкая система никотин - вода, имеющая как верхнюю критическую точку растворения (Кв с T к = 208°С), так и нижнюю критическую точку (Кн с Тк ≈ 61° С).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Критическое состояние" в других словарях:

    Critical Condition Жанр комедия Режиссёр Майкл Эптед Продюсер Роберт В. Корт Тед Филд Роберт … Википедия

    В физике состояние двух равновесно сосуществующих фаз, при достижении которого фазы становятся тождественными по своим свойствам. Критическое состояние характеризуется критическими значениями температуры, давления, удельного объема, развитием… … Большой Энциклопедический словарь

    Современная энциклопедия

    Предельное состояние равновесия двухфазной системы, в к ром обе сосуществующие фазы становятся тождественными по своим св вам. На диаграммах состояния К. с. соответствуют предельные точки на кривых равновесия фаз т. н. критические точки. Согласно … Физическая энциклопедия

    Критическое состояние - (физическое), состояние двух равновесно сосуществующих фаз (например, газа и жидкости), при достижении которого фазы становятся тождественными по своим свойствам. Характеризуется критическими значениями температуры, давления, удельного объема.… … Иллюстрированный энциклопедический словарь

    КРИТИЧЕСКОЕ СОСТОЯНИЕ - КРИТИЧЕСКОЕ СОСТОЯНИЕ, особое состояние, характеризуемое тем, что исчезает различие между капельной жидкостью и ее насыщенным паром. Температура, объем и давление, отвечающие этому состоянию, называются также критическими. Если сжимать газ при… … Большая медицинская энциклопедия

    В медицине состояние пораженного (больного), для которого характерны тяжелые расстройства жизненно важных систем организма (в первую очередь сердечно сосудистой и дыхательной), требующие экстренного восстановления (частичного или полного… … Словарь черезвычайных ситуаций

    критическое состояние - Состояние термодинамической системы, характеризующееся исчезновением различия между фазами, находящимися в равновесии друг с другом: между жидкостью и ее паром, между двумя жидкостями. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика.… … Справочник технического переводчика

    КРИТИЧЕСКОЕ СОСТОЯНИЕ - предельное состояние вещества, при котором исчезает различие между его жидким и парообразным (газообразным) состоянием (фазой); характеризуется определёнными давлением, температурой и объёмом, называемыми критическими. К. с. может наблюдаться… … Большая политехническая энциклопедия

    критическое состояние - 48 критическое состояние: Состояние изделия, которое может привести к тяжелым последствиям: травмированию людей, значительному материальному ущербу или неприемлемым экологическим последствиям. Источник: ГОСТ Р 27.002 2009: Надежность в технике.… … Словарь-справочник терминов нормативно-технической документации

    - (физ.), состояние двух равновесно сосуществующих фаз, при достижении которого фазы становятся тождественными по своим свойствам. Критическое состояние характеризуется критическими значениями температуры, давления, удельного объёма, развитием… … Энциклопедический словарь

Книги

  • Критическое состояние плода. Диагностические критерии, акушерская тактика, перинатальные исходы , Стрижаков Александр Николаевич , Карданова Мадина Аслановна , Игнатко Ирина Владимировна , Тимохина Елена Владимировна , Книга посвящена наиболее значимым проблемам акушерства и перинатологии - критическому состоянию плода и декомпенсированной плацентарной недостаточности, особенностям этиопатогенеза данных… Категория: Акушерство и гинекология Издатель:

На рис. 123.1 приведены изотермы для нескольких значений температуры. Из рисунка видно, что с повышением температуры горизонтальный участок изотермы сокращается, стягиваясь в точку при температуре TKV, называемой критической. Соответственно уменьшается различие в удельных объемах, а следовательно, и в плотностях жидкости и насыщенного пара. При критической температуре это различие полностью исчезает. Одновременно исчезает всякое различие между жидкостью и паром. Температурный ход плотности жидкости и насыщенного пара показан на рис. 123.2.

Точка К, являющаяся пределом, к которому приближаются горизонтальные отрезки изотерм при стремлении температуры к критическому значению именуется критической точкой. Состояние, изображаемое точкой называется критическим состоянием вещества. Объем , давление и температура отвечающие критическому состоянию, называются критическими величинами.

Для критической изотермы точка К служит точкой перегиба. Касательная к изотерме в точке К расположена параллельно оси V.

Из рис. 123.1 следует, что давление насыщенного пара растет с температурой, достигая при критической температуре значения При температурах выше критической понятие насыщенного пара теряет смысл.

Поэтому кривая зависимостивления насыщенного пара от температуры заканчивается в критической точке (см. рис. 121.2).

Если провести линию через крайние точки горизонтальных участков изотерм (рис. 123.1), получается колоколообразная кривая, ограничивающая область двухфазных состояний вещества. При температурах выше критической вещество при любом давлении оказывается однородным. При таких температурах никаким сжатием не может быть осуществлено ожижение вещества.

Понятие критической температуры впервые было введено Д. И. Менделеевым в 1860 г. Менделеев назвал ее температурой абсолютного кипения жидкости и рассматривал как ту температуру, при которой исчезают силы сцепления между молекулами и жидкость превращается в пар, независимо от давления и занимаемого ею объема.

Колоколообразная кривая и участок критической изотермы, лежащий слева от точки делят диаграмму (, V) на три области (рис. 123.3). Наклонной штриховкой помечена область однородных жидких состояний вещества. Под колоколообразной кривой располагается область двухфазных состояний и, наконец, область, лежащая справа от колоколообразной кривой и верхней ветви критической изотермы, представляет собой область однородных газообразных состояний вещества. В последней можно особо выделить часть, лежащую под прабой ветвью критической изотермы, назвав ее областью пара.

Любое состояние в этой области отличается от остальных газообразных состояний в том отношении, что при изотермическом сжатии вещество, первоначально находившееся в таком состоянии, претерпевает процесс ожижения. Вещество, находящееся в одном из состояний при температуре выше критической, не может быть ожижено никаким сжатием. Подразделение газообразных состояний на газ и пар не является общепринятым.

Выбрав процеее перехода так, чтобы он не пересекал двухфазную область (рис. 123.4), можно осуществить переход из жидкого состояния в газообразное (или обратно) без расслаивания вещества на две фазы. В этом случае в процессе перехода вещество будет все время оставаться однородным.

Сходство свойств ненасыщенных паров и газов натолкнуло М. Фарадея на предположение: не являются ли газы ненасыщенными парами соответствующих жидкостей? Если предположение верно, то можно попытаться сделать их насыщенными и сконденсировать. Действительно, сжатием удалось сделать насыщенными многие газы, кроме шести, которые М. Фарадей назвал "постоянными": это азот, водород, воздух, гелий, кислород, оксид углерода CO .

Чтобы понять, в чем здесь дело, изучим подробнее изотермический процесс сжатия (расширения) пара. Мы видели, что изотерма реального газа отличается от изотермы идеального газа наличием горизонтального участка, соответствующего области существования двухфазной системы: насыщенного пара и жидкости.

Если проводить опыты при более высоких температурах (T 1 < T 2 < T 3 < T k < T 4), то можно обнаружить закономерность, общую для всех веществ (рис. 1).

Во-первых, чем выше температура, тем меньше объем, при котором начинается конденсация газа: V 1 > V’ 1 > V’’ 1 , если T 1 < T 2 < T 3 .

Во-вторых, чем выше температура, тем больше объем, занимаемый жидкостью после того, как весь пар конденсируется:

V 2 < V’ 2 < V’’ 2 .

Следовательно, длина прямолинейного участка изотермы с ростом температуры уменьшается.

Это легко объяснить: с ростом Τ давление насыщенного пара быстро нарастает, и для того, чтобы давление ненасыщенного пара сравнялось с давлением насыщенного, необходимо уменьшение объема. Причина увеличения объема V 2 - в тепловом расширении жидкости при нагревании. Так как объем V 1 уменьшается, то плотность паров при увеличении температуры увеличивается; увеличение объема V 2 свидетельствует об уменьшении плотности жидкости. Это значит, что различие между жидкостью и ее насыщенным паром в процессе такого нагревания сглаживается и при достаточно высокой температуре должно исчезнуть совсем.

Д. Менделеев установил, что для каждой жидкости должна существовать такая температура, которая экспериментально впервые была установлена для многих веществ Т. Эндрюсом и носит название критической температуры.

Критическая температура T кр - это такая температура, при которой плотность жидкости и плотность ее насыщенного пара становятся одинаковыми (рис. 2).

На изотермах при Т = T кр горизонтальный участок превращается в точку перегиба К .

Давление насыщенного пара какого-либо вещества при его критической температуре называется критическим давлением p кр. Оно является наибольшим возможным давлением насыщенных паров вещества.

Объем, который занимает вещество при p кр и t кр, называется критическим объемо м V кр. Это наибольший объем, который может занимать имеющаяся масса вещества в жидком состоянии.

При критической температуре различие между газом и жидкостью исчезает, и поэтому удельная теплота парообразования становится равной нулю.

Совокупность точек, соответствующих краям горизонтального участка изотерм (см. рис. 1), выделяет в плоскости p-V области существования двухфазной системы и отделяет ее от областей однофазных состояний вещества. Пограничная кривая области двухфазных состояний со стороны больших значений объема описывает состояние насыщенного пара и одновременно представляет собой кривую конденсации (начинается конденсация пара при изотермическом сжатии). Пограничная кривая со стороны меньших объемов представляет собой кривую, на которой заканчивается конденсация при сжатии насыщенного пара и начинается испарение жидкости при изотермическом расширении. Ее называют кривой испарения .

Существование критической температуры вещества объясняет, почему при обычных температурах одни вещества могут быть как жидкими, так и газообразными, а другие остаются газами.

Выше критической температуры жидкость не образуется даже при очень высоких давлениях.

Причина заключается в том, что здесь интенсивность теплового движения молекул оказывается настолько большой, что даже при относительно плотной их упаковке, вызванной большим давлением, молекулярные силы не могут обеспечить создание даже ближнего, а тем более дальнего порядка.

Таким образом, видно, что принципиальной разницы между газом и паром нет. Обычно газом называют вещество в газообразном состоянии, когда его температура выше критической. Паром называют также вещество в газообразном состоянии, но когда его температура ниже критической. Пар можно перевести в жидкость одним только увеличением давления, а газ нельзя.

В настоящее время все газы переведены в жидкое состояние при очень низких температурах. Последним в 1908 г. переведен гелий (t кр = -269 °С).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 176-178.

. В критическом состоянии поверхностное (межфазное) натяжение на границе раздела сосуществующих фаз равно нулю, поэтому вблизи критического состояния легко образуются системы, состоящие из мн. капель или пузырьков ( , ). Вблизи критического состояния резко возрастает величина флуктуации плотности (в случае чистых в-в) и компонентов (в ), что приводит к значит. изменению ряда физ. св-в в-ва (см. ). При приближении к критическому состоянию св-ва сосуществующих в фаз (плотность, и др.) изменяются постепенно, без скачка. Поэтому критическое состояние наблюдается лишь при изотропных фаз [жидких и (или) газовых] или кристаллич. фаз с одинаковым типом решетки. Независимо от природы сосуществующих фаз (типа двухфазного ) и числа компонентов в критическом состоянии система имеет на 2 меньше, чем в обычном гомогенном состоянии (см. ). В чистых в-вах (однокомпонентных системах) критическое состояние всегда имеет место для - (если в-во при критич. параметрах сохраняет свои хим. св-ва). На критическому состоянию отвечает конечная точка кривой , наз. критич. точкой (критическое состояние нонвариантно). В табл. представлены критич. параметры Т к и р к ряда в-в. Изотермы на диаграммах р - V (рис. 1) при т-рах ниже T к представляют собой ломаные линии с горизонтальными участками а 1 -b 1 , а 2 -b 2 , .... Геом. место точек типа а и b образует пограничную кривую аКb, разделяющую области двухфазного состояния (сосуществующих и ) и гомогенных состояний - чистой (ветвь аК) и (ветвь Kb). При T k изотерма является плавной кривой, имеющей точку перегиба с горизонтальной касательной. Выше T к ни при каких невозможно существование в с . Ур-ния критич. точки имеют вид: (дp/дV) Tк =0, (д 2 р/дV 2) Tк =0. Согласно этим ур-ниям, в критическом состоянии в системе не изменяется при изотермич. изменении объема. Слабая зависимость от объема может сохраняться в значит. интервале т-р и вдали от критич. точки. Иногда критическое состояние наблюдается в двух кристаллич. модификаций. Напр., Zr имеет две модификации с гранeцeнтрир. кубич. решетками, параметры к-рых сближаются с ростом и т-ры и становятся идентичными при 350-400°С и (20-22) . 10 8 Па.

Может заканчиваться верхней критич. точкой (р-римости) или ниж. критич. точкой (р-римости), в зависимости от того, увеличивается или уменьшается взаимная р-римость компонентов с повышением т-ры. В общем случае система может иметь обе критич. точки; пограничная кривая, отделяющая область гомогенного состояния системы при любых составах от области ее расслаивания на две жидкие фазы, имеет вид замкнутого овала (рис. 4). В двойных системах с ограниченной взаимной р-римостью наблюдается критическое состояние для газ-газ. Экспериментально обнаружены только ниж. критич. точки , хотя в принципе возможно существование и верх. точек. Критическое состояние бывает двух типов. Первый обнаружен в смесях, одним из компонентов к-рых является Не. Расслаивание газовой смеси начинается в критич. точке менее


Рис. 5. Диаграмма для двойной системы А В. K B , критич точка менее летучего компонента В; заштрихована область двухфазного газ-газ. а - газ-газ первого типа; T B Т 1 . Т 2 - изотермы . К B K 1 K 2 критич. кривая , bК B - участок критич. кривой - ; 6 второго типа: T 1 , Т D , Т* - изотермы . T D , Т n 2 - изотермы - . DK 2 - участок критич. кривая газ-газ, D - двойная критич. точка.

летучего компонента (К B на рис. 5,а). По мере повышения т-ры (изотермы T 1 , T 2 ,...) интервал составов, соответствующих двухфазному состоянию газовой смеси, сужается, а повышается. Вся критич. кривая расположена при более высоких и т-рах, чем кривые - . В случае критического состояния второго типа расслаивание газовой смеси начинается при т-рe, для к-рой еще наблюдается - , т.е. при т-ре ниже критич. точки менее летучего компонента К B (рис. 5,5). Изотерма жидкость-газ соприкасается с изотермой газ-газ в точке D, к-рая является двойной критич. точкой. Для кристалл-кристалл критическое состояние было обнаружено в случае системы - (твердый р-р внедрения). Критич. параметры - 19,9 атм и 295,3 o C; ниже этих значений существуют две кристаллич. фазы с одинаковой решеткой, но разл. содержанием , выше - система является гомогенной. Впоследствии было найдено критическое состояние и для твердых р-ров замещения, напр. в системе NaCl-KCl. Критич. кривые могут иметь особые точки, в к-рых термодинамич. поведение системы отличается от поведения в остальных точках критич. кривой. Особыми точками являются, напр., критич. точки жидкость-пар в случае бесконечно разбавленных р-ров. Их особенность состоит в том, что в пределах x i : 0 значения нек-рых св-в системы зависят от пути подхода к этому пределу. Напр., парциальный молярный объем р-рителя равен молярному объему чистого р-рителя только в том случае, если переход х i : 0 происходит при и т-рах, к-рые являются критич. параметрами для чистого р-рителя, вдали от критич. точки парциальный молярный объем р-рителя в бесконечно разбавленном р-ре при любых т-рах и равен молярному объему чистого р-рителя. Критич. точка , а также точки минимума или максимума на критич. кривой тоже считаются особыми. Для системы, показанной на рис. 5, б. особой точкой считается точка D, т. к. в ней кривые зависимости составов равновесных жидкости (в присут. газовой фазы) и жидкость-пар (в присут. второй жидкой фазы).


Осн. положения классич. (феноменологич.) теории критического состояния были сформулированы Дж. .Гиббсом и обобщены Л. Д. Ландау. Эта теория позволяет предсказать поведение в-ва в критическом состоянии по известным св-вам двухфазного состояния. Расчеты по совр. флуктуац. теории дают более точное соответствие опытным данным. Изучение критического состояния имеет важное практич. значение. Мн. технол. процессы, в частности нефте- и газодобывающие, высокотемпературные энергетические, протекают в условиях, близких к критич. параметрам систем, и в закритич. области параметров. Для разработки и проектирования таких процессов важно знать общую картину , включая все их границы (критич. кривые), а также особенности поведения систем вблизи критического состояния и в закритич. области.

Загрузка...