crimea-fun.ru

Сложение косинусов разных углов. Основные тригонометрические тождества, их формулировки и вывод

Продолжаем наш разговор про наиболее употребляемые формулы в тригонометрии. Важнейшие из них – формулы сложения.

Определение 1

Формулы сложения позволяют выразить функции разности или суммы двух углов с помощью тригонометрических функций этих углов.

Для начала мы приведем полный список формул сложения, потом докажем их и разберем несколько наглядных примеров.

Yandex.RTB R-A-339285-1

Основные формулы сложения в тригонометрии

Выделяют восемь основных формул: синус суммы и синус разности двух углов, косинусы суммы и разности, тангенсы и котангенсы суммы и разности соответственно. Ниже приведены их стандартные формулировки и вычисления.

1.Синус суммы двух углов можно получить следующим образом:

Вычисляем произведение синуса первого угла на косинус второго;

Умножаем косинус первого угла на синус первого;

Складываем получившиеся значения.

Графическое написание формулы выглядит так: sin (α + β) = sin α · cos β + cos α · sin β

2. Синус разности вычисляется почти так же, только полученные произведения нужно не сложить, а вычесть друг из друга. Таким образом, вычисляем произведения синуса первого угла на косинус второго и косинуса первого угла на синус второго и находим их разность. Формула пишется так: sin (α - β) = sin α · cos β + sin α · sin β

3. Косинус суммы. Для него находим произведения косинуса первого угла на косинус второго и синуса первого угла на синус второго соответственно и находим их разность: cos (α + β) = cos α · cos β - sin α · sin β

4. Косинус разности: вычисляем произведения синусов и косинусов данных углов, как и ранее, и складываем их. Формула: cos (α - β) = cos α · cos β + sin α · sin β

5. Тангенс суммы. Эта формула выражается дробью, в числителе которой – сумма тангенсов искомых углов, а в знаменателе – единица, из которой вычитается произведение тангенсов искомых углов. Все понятно из ее графической записи: t g (α + β) = t g α + t g β 1 - t g α · t g β

6. Тангенс разности. Вычисляем значения разности и произведения тангенсов данных углов и поступаем с ними схожим образом. В знаменателе мы прибавляем к единице, а не наоборот: t g (α - β) = t g α - t g β 1 + t g α · t g β

7. Котангенс суммы. Для вычислений по этой формуле нам понадобятся произведение и сумма котангенсов данных углов, с которыми мы поступаем следующим образом: c t g (α + β) = - 1 + c t g α · c t g β c t g α + c t g β

8. Котангенс разности. Формула схожа с предыдущей, но в числителе и знаменателе – минус, а не плюс c t g (α - β) = - 1 - c t g α · c t g β c t g α - c t g β .

Вы, наверное, заметили, что эти формулы попарно схожи. При помощи знаков ± (плюс-минус) и ∓ (минус-плюс) мы можем сгруппировать их для удобства записи:

sin (α ± β) = sin α · cos β ± cos α · sin β cos (α ± β) = cos α · cos β ∓ sin α · sin β t g (α ± β) = t g α ± t g β 1 ∓ t g α · t g β c t g (α ± β) = - 1 ± c t g α · c t g β c t g α ± c t g β

Соответственно, мы имеем одну формулу записи для суммы и разности каждого значения, просто в одном случае мы обращаем внимание на верхний знак, в другом – на нижний.

Определение 2

Мы можем взять любые углы α и β , и формулы сложения для косинуса и синуса подойдут для них. Если мы можем правильно определить значения тангенсов и котангенсов этих углов, то формулы сложения для тангенса и котангенса будут также для них справедливы.

Как и большинство понятий в алгебре, формулы сложения могут быть доказаны. Первая формула, которую мы докажем, - формула косинуса разности. Из нее потом можно легко вывести остальные доказательства.

Уточним основные понятия. Нам понадобится единичная окружность. Она получится, если мы возьмем некую точку A и повернем вокруг центра (точки O) углы α и β . Тогда угол между векторами O A 1 → и O A → 2 будет равняться (α - β) + 2 π · z или 2 π - (α - β) + 2 π · z (z – любое целое число). Получившиеся вектора образуют угол, который равен α - β или 2 π - (α - β) , или он может отличаться от этих значений на целое число полных оборотов. Взгляните на рисунок:

Мы воспользовались формулами приведения и получили следующие результаты:

cos ((α - β) + 2 π · z) = cos (α - β) cos (2 π - (α - β) + 2 π · z) = cos (α - β)

Итог: косинус угла между векторами O A 1 → и O A 2 → равняется косинусу угла α - β , следовательно, cos (O A 1 → O A 2 →) = cos (α - β) .

Вспомним определения синуса и косинуса: синус - функция угла, равная отношению катета противолежащего угла к гипотенузе, косинус – это синус дополнительного угла. Следовательно, точки A 1 и A 2 имеют координаты (cos α , sin α) и (cos β , sin β) .

Получим следующее:

O A 1 → = (cos α , sin α) и O A 2 → = (cos β , sin β)

Если непонятно, взгляните на координаты точек, расположенных в начале и конце векторов.

Длины векторов равны 1 , т.к. у нас единичная окружность.

Разберем теперь скалярное произведение векторов O A 1 → и O A 2 → . В координатах оно выглядит так:

(O A 1 → , O A 2) → = cos α · cos β + sin α · sin β

Из этого мы можем вывести равенство:

cos (α - β) = cos α · cos β + sin α · sin β

Таким образом, формула косинуса разности доказана.

Теперь мы докажем следующую формулу – косинуса суммы. Это проще, поскольку мы можем воспользоваться предыдущими расчетами. Возьмем представление α + β = α - (- β) . У нас есть:

cos (α + β) = cos (α - (- β)) = = cos α · cos (- β) + sin α · sin (- β) = = cos α · cos β + sin α · sin β

Это и есть доказательство формулы косинуса суммы. В последней строчке использовано свойство синуса и косинуса противоположных углов.

Формулу синуса суммы можно вывести из формулы косинуса разности. Возьмем для этого формулу приведения:

вида sin (α + β) = cos (π 2 (α + β)) . Так
sin (α + β) = cos (π 2 (α + β)) = cos ((π 2 - α) - β) = = cos (π 2 - α) · cos β + sin (π 2 - α) · sin β = = sin α · cos β + cos α · sin β

А вот доказательство формулы синуса разности:

sin (α - β) = sin (α + (- β)) = sin α · cos (- β) + cos α · sin (- β) = = sin α · cos β - cos α · sin β
Обратите внимание на использование свойств синуса и косинуса противоположных углов в последнем вычислении.

Далее нам нужны доказательства формул сложения для тангенса и котангенса. Вспомним основные определения (тангенс – отношение синуса к косинусу, а котангенс –наоборот) и возьмем уже выведенные заранее формулы. У нас получилось:

t g (α + β) = sin (α + β) cos (α + β) = sin α · cos β + cos α · sin β cos α · cos β - sin α · sin β

У нас получилась сложная дробь. Далее нам нужно разделить ее числитель и знаменатель на cos α · cos β , учитывая что cos α ≠ 0 и cos β ≠ 0 , получаем:
sin α · cos β + cos α · sin β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β = sin α · cos β cos α · cos β + cos α · sin β cos α · cos β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β

Теперь сокращаем дроби и получаем формулу следующего вида: sin α cos α + sin β cos β 1 - sin α cos α · s i n β cos β = t g α + t g β 1 - t g α · t g β .
У нас получилось t g (α + β) = t g α + t g β 1 - t g α · t g β . Это и есть доказательство формулы сложения тангенса.

Следующая формула, которую мы будем доказывать – формула тангенса разности. Все наглядно показано в вычислениях:

t g (α - β) = t g (α + (- β)) = t g α + t g (- β) 1 - t g α · t g (- β) = t g α - t g β 1 + t g α · t g β

Формулы для котангенса доказываются схожим образом:
c t g (α + β) = cos (α + β) sin (α + β) = cos α · cos β - sin α · sin β sin α · cos β + cos α · sin β = = cos α · cos β - sin α · sin β sin α · sin β sin α · cos β + cos α · sin β sin α · sin β = cos α · cos β sin α · sin β - 1 sin α · cos β sin α · sin β + cos α · sin β sin α · sin β = = - 1 + c t g α · c t g β c t g α + c t g β
Далее:
c t g (α - β) = c t g   (α + (- β)) = - 1 + c t g α · c t g (- β) c t g α + c t g (- β) = - 1 - c t g α · c t g β c t g α - c t g β


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.


    В этой статье мы всесторонне рассмотрим . Основные тригонометрические тождества представляют собой равенства, устанавливающие связь между синусом, косинусом, тангенсом и котангенсом одного угла, и позволяют находить любую из этих тригонометрических функций через известную другую.

    Сразу перечислим основные тригонометрические тождества, которые разберем в этой статье. Запишем их в таблицу, а ниже дадим вывод этих формул и приведем необходимые пояснения.

    Навигация по странице.

    Связь между синусом и косинусом одного угла

    Иногда говорят не об основных тригонометрических тождествах, перечисленных в таблице выше, а об одном единственном основном тригонометрическом тождестве вида . Объяснение этому факту достаточно простое: равенства получаются из основного тригонометрического тождества после деления обеих его частей на и соответственно, а равенства и следуют из определений синуса, косинуса, тангенса и котангенса . Подробнее об этом поговорим в следующих пунктах.

    То есть, особый интерес представляет именно равенство , которому и дали название основного тригонометрического тождества.

    Прежде чем доказать основное тригонометрическое тождество, дадим его формулировку: сумма квадратов синуса и косинуса одного угла тождественно равна единице. Теперь докажем его.

    Основное тригонометрическое тождество очень часто используется при преобразовании тригонометрических выражений . Оно позволяет сумму квадратов синуса и косинуса одного угла заменять единицей. Не менее часто основное тригонометрическое тождество используется и в обратном порядке: единица заменяется суммой квадратов синуса и косинуса какого-либо угла.

    Тангенс и котангенс через синус и косинус

    Тождества, связывающие тангенс и котангенс с синусом и косинусом одного угла вида и сразу следуют из определений синуса, косинуса, тангенса и котангенса. Действительно, по определению синус есть ордината y, косинус есть абсцисса x, тангенс есть отношение ординаты к абсциссе, то есть, , а котангенс есть отношение абсциссы к ординате, то есть, .

    Благодаря такой очевидности тождеств и часто определения тангенса и котангенса дают не через отношение абсциссы и ординаты, а через отношение синуса и косинуса. Так тангенсом угла называют отношение синуса к косинусу этого угла, а котангенсом – отношение косинуса к синусу.

    В заключение этого пункта следует отметить, что тождества и имеют место для всех таких углов , при которых входящие в них тригонометрические функции имеют смысл. Так формула справедлива для любых , отличных от (иначе в знаменателе будет нуль, а деление на нуль мы не определяли), а формула - для всех , отличных от , где z - любое .

    Связь между тангенсом и котангенсом

    Еще более очевидным тригонометрическим тождеством, чем два предыдущих, является тождество, связывающее тангенс и котангенс одного угла вида . Понятно, что оно имеет место для любых углов , отличных от , в противном случае либо тангенс, либо котангенс не определены.

    Доказательство формулы очень просто. По определению и , откуда . Можно было доказательство провести и немного иначе. Так как и , то .

    Итак, тангенс и котангенс одного угла, при котором они имеют смысл, есть .

    Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

    Геометрическое определение




    |BD| - длина дуги окружности с центром в точке A .
    α - угол, выраженный в радианах.

    Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

    Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

    Тангенс

    Где n - целое.

    В западной литературе тангенс обозначается так:
    .
    ;
    ;
    .

    График функции тангенс, y = tg x


    Котангенс

    Где n - целое.

    В западной литературе котангенс обозначается так:
    .
    Также приняты следующие обозначения:
    ;
    ;
    .

    График функции котангенс, y = ctg x


    Свойства тангенса и котангенса

    Периодичность

    Функции y = tg x и y = ctg x периодичны с периодом π .

    Четность

    Функции тангенс и котангенс - нечетные.

    Области определения и значений, возрастание, убывание

    Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

    y = tg x y = ctg x
    Область определения и непрерывность
    Область значений -∞ < y < +∞ -∞ < y < +∞
    Возрастание -
    Убывание -
    Экстремумы - -
    Нули, y = 0
    Точки пересечения с осью ординат, x = 0 y = 0 -

    Формулы

    Выражения через синус и косинус

    ; ;
    ; ;
    ;

    Формулы тангенса и котангенс от суммы и разности



    Остальные формулы легко получить, например

    Произведение тангенсов

    Формула суммы и разности тангенсов

    В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

    Выражения через комплексные числа

    Выражения через гиперболические функции

    ;
    ;

    Производные

    ; .


    .
    Производная n-го порядка по переменной x от функции :
    .
    Вывод формул для тангенса > > > ; для котангенса > > >

    Интегралы

    Разложения в ряды

    Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

    При .

    при .
    где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
    ;
    ;
    где .
    Либо по формуле Лапласа:


    Обратные функции

    Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

    Арктангенс, arctg


    , где n - целое.

    Арккотангенс, arcctg


    , где n - целое.

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
    Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

    Я не буду убеждать вас не писать шпаргалки. Пишите! В том числе, и шпаргалки по тригонометрии. Позже я планирую объяснить, зачем нужны шпаргалки и чем шпаргалки полезны. А здесь — информация, как не учить, но запомнить некоторые тригонометрические формулы. Итак — тригонометрия без шпаргалки!Используем ассоциации для запоминания.

    1. Формулы сложения:

    косинусы всегда «ходят парами»: косинус-косинус, синус-синус. И еще: косинусы — «неадекватны». Им «все не так», поэтому они знаки меняют: «-» на «+», и наоборот.

    Синусы — «смешиваются» : синус-косинус, косинус-синус.

    2. Формулы суммы и разности:

    косинусы всегда «ходят парами». Сложив два косинуса — «колобка», получаем пару косинусов- «колобков». А вычитая, колобков точно не получим. Получаем пару синусов. Еще и с минусом впереди.

    Синусы — «смешиваются» :

    3. Формулы преобразования произведения в сумму и разность.

    Когда мы получаем пару косинусов? Когда складываем косинусы. Поэтому

    Когда мы получаем пару синусов? При вычитании косинусов. Отсюда:

    «Смешение» получаем как при сложении, так и при вычитании синусов. Что приятнее: складывать или вычитать? Правильно, складывать. И для формулы берут сложение:

    В первой и в третьей формуле в скобках — сумма. От перестановки мест слагаемых сумма не меняется. Принципиален порядок только для второй формулы. Но, чтобы не путаться, для простоты запоминания мы во всех трех формулах в первых скобках берем разность

    а во вторых — сумму

    Шпаргалки в кармане дают спокойствие: если забыл формулу, можно списать. А дают уверенность: если воспользоваться шпаргалкой не удастся, формулы можно легко вспомнить.

    Загрузка...