crimea-fun.ru

Дыхательная цепь. Тканевое дыхание

Дыхание тканевое (синоним клеточное дыхание) - совокупность окислительно-восстановительных процессов в клетках, органах и тканях, протекающих с участием молекулярного кислорода и сопровождающихся запасанием энергии в фосфорильной связи молекул АТФ. Тканевое дыхание является важнейшей частью обмена веществ и энергии в организме. В результате тканевого дыхания при участии специфических ферментов происходит окислительный распад крупных органических молекул - субстратов дыхания - до более простых и в конечном счете до СО 2 и Н 2 О с высвобождением энергии. Принципиальным отличием тканевого дыхания от иных процессов, протекающих с поглощением кислорода (например, от перекисного окисления липидов), является запасание энергии в форме АТФ, не характерное для других аэробных процессов.

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от тканевого дыхания .

Большая часть энергии в аэробных клетках образуется благодаря тканевому дыханию , и количество образующейся энергии зависит от его интенсивности. Интенсивность тканевого дыхания определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность тканевого дыхания наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы , жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность тканевого дыхания определяют полярографически (см. Полярография ) или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики тканевого дыхания используют так называемый дыхательный коэффициент - отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Субстратами тканевого дыхания являются продукты превращения жиров, белков и углеводов (см. Азотистый обмен , Жировой обмен , Углеводный обмен ), поступающих с пищей, из которых в результате соответствующих метаболических процессов образуется небольшое число соединений, вступающих в цикл трикарбоновых кислот - важнейший метаболический цикл у аэробных организмов, в котором вовлекаемые в него вещества претерпевают полное окисление. Цикл трикарбоновых кислот представляет собой последовательность реакций, объединяющих конечные стадии метаболизма белков, жиров и углеводов и обеспечивающих восстановительными эквивалентами (атомами водорода или электронами, передающимися от веществ-доноров веществам-акцепторам; у аэробов конечным акцептором восстановительных эквивалентов является кислород) дыхательную цепь в митохондриях (митохондриальное дыхание). В митохондриях происходит химическая реакция восстановления кислорода и сопряженное с этим процессом запасание энергии в виде АТФ, образующегося из АДФ и неорганического фосфата. Процесс синтеза молекулы АТФ или АДФ за счет энергии окисления различных субстратов называется окислительным, или дыхательным фосфорилированием. В норме митохондриальное дыхание всегда сопряжено с фосфорилированием, что связано с регуляцией скорости окисления пищевых веществ потребностью клетки в полезной энергии. При некоторых воздействиях на организм или ткани (например, при переохлаждении) происходит так называемое разобщение окисления и фосфорилирования, приводящее к рассеиванию энергии, которая не фиксируется в виде фосфорильной связи молекулы АТФ, а принимает вид тепловой энергии. Разобщающим действием обладают также гормоны щитовидной железы, жирные кислоты, 2,4-динитрофенол, дикумарин и некоторые другие вещества.

Тканевое дыхание в энергетическом отношении значительно более выгодно для организма, чем анаэробные окислительные превращения питательных веществ, например гликолиз . У человека и высших животных около 2 / 3 всей энергии, получаемой из пищевых веществ, освобождается в цикле трикарбоновых кислот. Так, при полном окислении 1 молекулы глюкозы до СО 2 и Н 2 О запасается 36 молекул АТФ, из которых лишь 2 молекулы образуются в процессе гликолиза.

Тканевое дыхание

клеточное дыхание, совокупность ферментативных процессов, протекающих при участии кислорода воздуха в клетках органов и тканей, в результате чего продукты расщепления углеводов, жиров, белков окисляются до углекислого газа и воды, а значит, часть освобождающейся энергии запасается в форме богатых энергией, или макроэргических соединений (См. Макроэргические соединения). Т. д. отличают от внешнего дыхания (См. Дыхание) - совокупности физиологических процессов, обеспечивающих поступление в организм кислорода и выведение из него углекислого газа. Многие ферменты, катализирующие эти реакции, находятся в особых клеточных органоидах - митохондриях (См. Митохондрии).

На все проявления жизни (См. Жизнь) - рост, движение, раздражимость, самовоспроизведение и др. - организм расходует энергию. Формой энергии, пригодной для использования клетками, является энергия химических связей (главным образом фосфатных) в макроэргических соединениях - аденозинтрифосфорной кислоте (АТФ) и др. Для синтеза АТФ необходим приток энергии извне. По способам извлечения энергии существует принципиальное различие между автотрофными организмами (См. Автотрофные организмы) и гетеротрофными организмами (См. Гетеротрофные организмы). Клетки зелёных растений - наиболее типичных автотрофов - в процессе фотосинтеза используют энергию солнечного света для синтеза АТФ и глюкозы. (Образование из глюкозы более сложных молекул происходит в клетках растений также в процессе Т. д.) В клетках гетеротрофов - животных и человека - единственным источником энергии является энергия химических связей молекул пищевых веществ. Молекулы различных соединений, выполняющие роль биологического «топлива» (глюкоза, жирные кислоты, некоторые аминокислоты), образовавшись в клетках животного организма или поступив в кровь из пищеварительного тракта, претерпевают ряд последовательных химических превращений. В процессе Т. д. можно наметить три основные стадии: 1) окислительное образование ацетилкофермента А (активная форма уксусной кислоты) из пировиноградной кислоты (промежуточный продукт расщепления глюкозы), жирных кислот и аминокислот; 2) разрушение ацетильных остатков в Трикарбоновых кислот цикл е с освобождением 2 молекул углекислого газа и 4 пар атомов водорода, частично акцептируемых коферментами Никотинамидадениндинуклеотид ом и Флавинадениндинуклеотид ом и частично переходящих в раствор в виде протонов; 3) перенос электронов и протонов к молекулярному кислороду (образование H 2 O) - процесс, катализируемый набором дыхательных ферментов и сопряжённый с образованием АТФ (так называемое Окислительное фосфорилирование). Первые две стадии подготавливают третью, в ходе которой в результате последовательных окислительно-восстановительных реакций происходит освобождение основной части энергии, вырабатываемой в клетке. При этом около 50% энергии в результате окислительного фосфорилирования запасается в форме богатых энергией связей АТФ, а остальная часть её выделяется в виде тепла.

Т. д. обеспечивает образование и постоянное пополнение АТФ в клетках. В случае недостатка в снабжении клеток животных и человека кислородом запасы АТФ не исчерпываются сразу. Их пополнение может происходить в результате включения дополнительных механизмов - систем анаэробного (без участия кислорода) распада углеводов - Гликолиз а и гликогенолиза. Однако этот путь энергетически во много раз менее эффективен и не может обеспечить функции и целостность структуры органов и тканей. Биологическая роль Т. д. не исчерпывается существенным вкладом в энергетический обмен организма. На различных его этапах образуются молекулы органических соединений, используемых клетками в качестве промежуточных продуктов для различных биосинтезов. См. также Аденозинфосфорные кислоты , Биоэнергетика , Обмен веществ , Окисление биологическое .

Лит.: Северин С. Е., Биологическое окисление и окислительное фосфорилирование, в кн.: Химические основы процессов жизнедеятельности, М., 1962; Ленинджер А., Превращение энергии в клетке, в кн.: Живая клетка, пер. с англ., 2 изд., М., 1962; его же. Биохимия, пер. с англ., М., 1974; Скулачев В. П., Аккумуляция энергии в клетке, М., 1969; Вилли К., Детье В., Биология. (Биологические процессы и законы), пер. с англ., М., 1974.

В. Г. Иванова.

Схема превращения энергии в живых клетках: тканевое дыхание, образование АТФ и пути его использования.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

  • Тканевая терапия
  • Тканепечатающая машина

Смотреть что такое "Тканевое дыхание" в других словарях:

    тканевое дыхание - – аэробный распад органических веществ в живых тканях … Краткий словарь биохимических терминов

    Тканевое дыхание - … Википедия

    ДЫХАНИЕ - ДЫХАНИЕ. Содержание: Сравнительная физиология Д.......... 534 Дыхательный аппарат............. 535 Механизм вентиляции легких......... 537 Регистрация дыхательных движении..... 5 S8 Частота Д., сила дыхат. мышц и глубина Д. 539 Классификация и… … Большая медицинская энциклопедия

    ДЫХАНИЕ - совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь

    ДЫХАНИЕ Современная энциклопедия

    Дыхание - ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь

    Дыхание - Диафрагмальный (брюшной) тип дыхания у человека У этого термина существуют и другие значения, см. Клеточное дыхание … Википедия

    дыхание - ДЫХАНИЕ, ДЫХАНЬЕ, я; ср. 1. Вбирание и выпускание воздуха лёгкими или (у некоторых животных) иными соответствующими органами как процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Шумное, тяжёлое,… … Энциклопедический словарь

    Дыхание - I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия

    Дыхание - совокупность процессов, которые обеспечивают поступление в организм кислорода и выделение из него углекислого газа (внешнее Д.) и использование кислорода клетками и тканями для окисления органических веществ с освобождением содержащейся в … Большая советская энциклопедия

Книги

  • Проблемы биологической физики , Л. А. Блюменфельд , В книге рассматриваются те проблемы теоретической биологии, которые можно пытаться изучать на основе методов и принципов физики. Детально анализируется ряд важнейших проблем современной… Категория: Основы медицинских знаний Серия: Физика жизненных процессов Издатель:

Это процесс потребление клетками тканей организма кислорода, который участвует в биологическом окислении. Такой вид окисления называют аэробным окислением. Если конечным акцептором в цепи переноса водорода выступает не кислород, а другие вещества (например пировиноградная кислота), то такой тип окисления называют анаэробным.

Т.о. биологическое окисление - это дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Биологическое окисление питательных веществ происходит в митохондриях. В них были обнаружены ферменты, участвующие в цикле лимонной кислоты, дыхательной цепи, окислительного фосфорилирования, в расщеплении жирных кислот и ряда аминокислот.

Дыхательная цепь (ферменты тканевого дыхания) - это переносчики протонов и электронов от окисляемого субстрата на кислород. Окислитель - это соединение, способное принимать электроны. Такая способность количественно характеризуется окислительно-восстановительным потенциалом по отношению к стандартному водородному электроду, рН которого равен 7,0. Чем меньше потенциал соединения, тем сильнее его восстанавливающие свойства и наоборот.

Особенности тканевого дыхания

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от дыхания тканей.

Большая часть энергии в аэробных клетках образуется благодаря дыханию тканей, и количество образующейся энергии зависит от его интенсивности. Интенсивность Д. т. определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность его наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы, жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность такого дыхания определяют полярографически или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики используют так называемый дыхательный коэффициент - отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Т. о. любое соединение может отдавать электроны только соединению с более высоким окислительно-восстановительным потенциалом. В дыхательной цепи каждое последующее звено имеет более высокий потенциал, чем предыдущее.

Дыхательная цепь

Дыхательная цепь состоит из: НАД - зависимой дегидрогеназы; ФАД- зависимой дегидрогеназы; Убихинона (КоQ); Цитохрмов b, c, a+a3 .

НАД-зависимые дегидрогеназы. В качестве кофермента содержат НАД и НАДФ. Пиридиновое кольцо никотинамида способно присоединять электроны и протоны водорода.

ФАД и ФМН-зависимые дегидрогеназы содержат в качестве кофермента фосфорный эфир витамина В2 (ФАД).

Убихинон (КоQ) отнимает водород у флавопротеидов и превращается при этом в гидрохинон.

Цитохромы - белки хромопротеиды, способные присоединять электроны, благодаря наличию в своем составе в качестве простетических групп железопорфиринов. Они принимают электрон от вещества, являющегося немного боле сильным восстановителем, и передают его более сильному окислителю. Атом железа связан с атомом азота имидазольного кольца аминоксилоты гистидина с одной стороны от плоскости порфиринового цикла, а с другой стороны с атомом серы метионина. Поэтому потенциальная способность атома железа в цитохромах к связыванию кислорода подавлена.

В цитохроме с порфириновая плоскость ковалентно связана с белком через два остатка цистеина, а в цитохромах b и а, она ковалентно не связано с белком.

В цитохроме а+а3 (цитохромоксидазе) вместо протопорфирина содержатся порфирин А, который отличатся рядом структурных особенностей. Пятое координационное положение железа занято аминогруппой, принадлежащей остатку аминосахара, входящего в состав самого белка.

В отличии от гема гемолгобина атом железа в цитохромах может обратимо переходить из двух в трехвалентное состояние это обеспечивает транспорт электронов.

Потребности тканей в кислороде и его запасы

Потребности тканей в кислороде зависят от функционального состояния клеток, входящих в ее состав. Скорость потребления кислорода обычно выражается в мл кислорода на 1 г веса в минуту. В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), печенью и корковым веществом почек. В тоже время скелетные мышцы, селезенка и белое вещество головного мозга в покое потребляют мало кислорода.
При увеличении активности какого-либо органа потребность его в кислороде увеличивается. При физической нагрузке потребление кислорода миокардом может увеличиться в 3 - 4 раза, а работающими скелетными мышцами - более чем в 20 - 50 раз по сравнению с покоем. Потребление кислорода почками возрастает при увеличении интенсивности реабсорбции ионов натрия.

Количество кислорода, которое клетки могут использовать для окислительных процессов, зависит от конвекционного переноса кислорода кровью и диффузии кислорода из капилляров в ткани. Поскольку единственным запасом кислорода в большинстве тканей служит его физически растворенная фракция, снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов.
Единственной тканью, в которой имеются запасы кислорода, является мышечная ткань. Роль депо кислорода играет пигмент миоглобин, способный обратимо связывать кислород. Однако содержание миоглобина в мышцах человека невелико, так, среднее содержание миоглобина в сердце составляет 4 мг/г. Поскольку 1 г миоглобина может связать примерно до 1,34 мл кислорода, запасы кислорода в сердце составляют около 0,005 мл кислорода на 1г ткани. Этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3 - 4 секунд.
Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок снижается или полностью прекращается во время систолы.
В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным. Восполнение запасов оксимиоглобина является составной частью кислородного долга, который должен быть покрыт каждым мышечным волокном после окончания работы.

Кислородное голодание тканей

При ряде патологических состояний страдает снабжение тканей кислородом. В этих случаях энергетические потребности клеток могут в течение короткого времени удовлетворяться за счет ограниченных запасов энергии в виде АТФ и креатинфосфата, а также за счет анаэробного гликолиза. Однако эти источники энергии недостаточны и могут использоваться недолго, так как в анаэробных условиях резко возрастает потребность клеток в глюкозе, поступление которой обычно не может удовлетворять эту потребность, и во-вторых, в процессе гликолиза образуется большое количество лактата, который медленно удаляется из ткани для последующей переработки (например, для расщепления в печени, почках или миокарде, или для синтеза гликогена). При значительном недостатке кислорода содержание лактата в крови постоянно нарастает, что приводит к нереспираторному ацидозу. Когда рН внутриклеточной среды падает ниже уровня оптимальной активности ферментных систем, наступают выраженные нарушения клеточного метаболизма.
Основные причины, приводящие к кислородному голоданию (тканевой гипоксии), это понижение напряжения кислорода в артериальной крови (артериальная гипоксия), уменьшение кислородной емкости крови (анемия) и уменьшение кровоснабжения того или иного органа (ишемия).



Тканевое дыхание представляет собой комплекс окислительно-восстановительных реакций, протекающих в клетках с участием кислорода. Процесс окисления сопровождается отдачей электронов, а процесс восстановления - их присоединением. В роли акцептора электронов, г.е. окислителя, выступает кислород, так что основным уравнением реакции потребления 0 2 в клетках аэробных организмов будет

Эта реакция хорошо всем известна как реакция взрыва гремучего газа, при которой высвобождается значительное количество энергии. В живых системах, конечно, взрыва не происходит, так как водород присутствует в них не в свободной молекулярной форме, а является частью органических соединений и присоединяется к кислороду не сразу, а постепенно через ряд промежуточных переносчиков - дыхательных ферментов. Выделяющаяся энергия в такой системе запасается в форме градиента концентрации протонов.

В роли катализаторов процессов тканевого дыхания выступают ферменты класса оксидоредуктаз. Эти ферменты располагаются на складках внутренней мембраны митохондрий, где и происходит завершающая процесс реакция - образование воды.

Дыхательные ферменты располагаются на мембране упорядоченно, формируя четыре полиферментных комплекса (рис. 3.13).

Рис. 3.13. Последовательность включения ферментативных комплексов (1-4) в процесс тканевого дыхания:

сокращения расшифрованы в тексте

В качестве переносчиков водорода в них выступают небольшие органические молекулы: нефосфорилированный и фосфорилированный нико- тинамидадениндинуклеотид (НАД+, НАДФ) - производные никотиновой кислоты (витамина РР); флавинадениндинуклеотид и флавинмононукле- отид (ФАД, ФМН) - производные рибофлавина (витамина В 2); хорошо растворимый в мембранных липидах убихинон (кофермент Q ) и группа гемсодержащих белков (цитохромы а, а 3 , Ь, с). Важную роль в электрон- транспортной цепи митохондрий играют железо, которое входит в состав гема цитохромов и комплекса FcS, а также медь.

Работа дыхательной цепи митохондрий завершается реакцией, катализируемой ферментом цитохром-с-оксидазой, при которой электроны передаются непосредственно кислороду. Молекула кислорода принимает четыре электрона, и формируются две молекулы воды.

Перенос электронов по дыхательной цепи сопровождается перекачкой протонов из матрикса митохондрий в межмембранное пространство и формированием на внутренней мембране трансмембранного градиента протонов. Этот градиент используется АТФ-синтазой (ферментным комплексом) для синтеза АТФ из АДФ (см. также т. 1, гл. 1).

Прохождения через внутреннюю мембрану митохондрий по электрохимическому градиенту четырех протонов достаточно для синтеза и переноса из митохондрии в цитоплазму одной молекулы АТФ. Так как в процессе образования двух молекул воды в межмембранное пространство переносится 20 протонов, то запасенной таким образом энергии хватает на синтез пяти молекул АТФ. Существует и укороченный путь, когда переносится 12 протонов и синтезируется три молекулы АТФ.

Описанный механизм является основным путем синтеза АТФ клетками в аэробных условиях и называется окислительным фосфорилированием (рис. 3.14).


Рис. 3.14.

1-4 - ферментные комплексы электронно-транспортной цепи

Энергия переноса электронов может использоваться не на синтез АТФ, а на получение тепла. Такой эффект называется разобщением окислительного фосфорилирования и наблюдается в норме в бурой жировой ткани. Роль разобщителя в ней берет на себя особый белок термогенин.

Присоединение четырех электронов к молекуле кислорода приводит к образованию воды. Передача меньшего количества электронов вызывает образование активных форм кислорода (АФК): если присоединяется только один электрон - образуется супероксид ион-радикал, если два электрона - пероксид ион-радикал, если три - гидроксил ион-радикал. Все эти радикалы необычайно химически активны и могут оказывать на клетку повреждающие воздействия (особенно в плане разрушения мембран). Помимо митохондрий, АФК могут образовываться другими ферментными системами в мембранах эндоплазматической сети. В здоровом организме образование АФК контролируется различными антиоксидантными системами: ферментативной и неферментативной. Ферментативную систему составляют такие ферменты, как супероксиддисмутаза, каталаза, глутатионпероксидаза и другие, а неферментативную - витамины Е, С, А, мочевая кислота и ряд других веществ.

АФК не только повреждают клетки, но могут выполнять и защитную функцию. Так, например, макрофаги используют продукцию АФК для разрушения фагоцитируемых микроорганизмов.

Тканевоме или клемточное дыхание -- совокупность биохимических реакций, протекающих в клетках живых организмов, в процессе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (молекул аденозинтрифосфорной кислоты и других макроэргов) и может быть использована организмом по мере необходимости. Входит в группу процессов катаболизма. На клеточном уровне рассматривают два основных вида дыхания: аэробное (с участием окислителя-кислорода) и анаэробное. При этом, физиологические процессы транспортировки к клеткам многоклеточных организмов кислорода и удалению из них углекислого газа рассматриваются как функция внешнего дыхания.

Аэромбное дыхамние. В цикле Кребса основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электрон транспортной цепи. Здесь происходит окисление НАД Н и ФАДН 2 , восстановленных в процессах гликолиза, в-окисления, цикла Кребса и т. д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот -- в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД Н может дать в ходе этого процесса 2,5 молекулы АТФ, ФАДН 2 -- 1,5 молекулы. Конечным акцептором электрона вдыхательной цепи аэробов является кислород.

Анаэромбное дыхамние -- биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O 2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Брюшное дыхание осуществляется при помощи сокращения диафрагмы и мышц брюшной полости при относительном покое стенок грудной клетки. При вдохе плечи опускаются, грудные мышцы ослабевают, диафрагма сокращается и опускается. Это увеличивает отрицательное давление в грудной полости, и заполняется воздухом нижняя часть легких. При этом повышается внутрибрюшное давление и выпячивается живот. Во время выдоха диафрагма расслабляется, поднимается, брюшная стенка возвращается в исходное положение.

Во время диафрагмального дыхания осуществляется массаж внутренних органов. Чаще всего такое дыхание встречается у мужчин. Оно также возникает, когда человек отдыхает, как правило, во время сна.

Нижнее грудное дыхание задействует межреберные мускулы. В результате сокращения мышц, грудная клетка расширяется наружу и вверх, в легкие поступает воздух, и происходит вдох. Во время нижнего дыхания заполняется лишь часть легких, и задействуются только ребра, но остальные части тела остаются неподвижными. В результате не происходит полноценного процесса газообмена.

Нижнее грудное дыхание, как правило, используют женщины. К нему также прибегают люди, которые часто находятся в сидячем положении, т. к. им все время приходится наклоняться вперед для чтения или письма.

Верхнее грудное дыхание происходит за счет работы мускулатуры ключиц. При вдохе ключицы и плечи поднимаются, и в легкие поступает воздух. При этом приходится прилагать много усилий, т. к. частота вдохов и выдохов увеличивается, а поступление кислорода оказывается незначительным. Такое дыхание можно преднамеренно вызвать, если втянуть живот. В верхнем грудном дыхании участвует только незначительная часть легких и газообмен происходит неполноценно. В результате воздух как следует не очищается и не согревается.

К этому типу дыхания прибегают женщины во время родов.

Смешанное или полное дыхание приводит в движение весь дыхательный аппарат. При этом человека работают все виды мускулатуры, и диафрагма, и полностью вентилируются легкие.

Такое дыхание удаляет шлаки, стимулирует обмен веществ, обновляет организм.

При этом дыхание может быть как глубоким, так и поверхностным. Поверхностное дыхание является легким и ускоренным. Частота дыхательных движений составляет до 60 движений в минуту. При этом делается беззвучный вдох и шумный интенсивный выдох. Это позволяет сбросить напряжение со всех мышц тела. При поверхностном типе дыхания легкие лишь частично наполняются воздухом.

Поверхностно дышат только маленькие дети. Чем старше становится ребенок, тем меньше вдохов за минуту он совершает. Дыхание взрослого человека приобретает глубокий характер. Во время глубокого дыхания частота замедляется, легкие максимально наполняются воздухом. Объем вдоха при этом превышает допустимую норму.

Но является ли такое дыхание благотворным для нашего здоровья? И какой вообще тип дыхания является наилучшим?

Загрузка...